Тепловая мощность проводимости пленки в четыре раза больше, чем медь. Кроме того, графеновая пленка прикрепляется к электронным компонентам из кремния, способствующего производительности пленки по сравнению с типичными характеристиками графена.
Электронные системы, доступные сегодня, накапливают большое количество тепла, в основном из-за постоянно растущего спроса на функциональность. Избавление от лишнего тепла эффективными способами является обязательным для продления срока службы электроники, а также приводит к значительному снижению потребления энергии. По данным американского исследования, примерно половина энергии, необходимая для запуска компьютерных серверов, используется с целью охлаждения.
Пару лет назад, исследовательская группа под руководством Йохана Лиу (Johan Liu), профессора Технического университета Чалмерса, была первой, показавшей, что графен может иметь охлаждающий эффект на электронику, основанную на кремнии. Это стало отправной точкой для исследователей.
"Но методы, используемые до сих пор, представляли исследователям проблемы", говорит Йохан Лиу. "Стало очевидным, что эти методы не могут быть использованы, чтобы избавить электронные устройства от большого количества тепла, потому что они состояли лишь из нескольких слоев теплопроводящих атомов. При попытке добавить больше слоев графена, возникает другая проблема – проблема с адгезивностью. После того, как увеличили количество слоев, графен больше не будет прилипать к поверхности, так как адгезия держится только слабыми ван-дер-ваальсовыми связями. Мы уже решили эту проблему, создав сильные ковалентные связи между графеновой пленкой и поверхностью – электронным компонентом из кремния".
Кроме того, функционализация с помощью силанового соединения удваивает теплопроводность графена. Исследователи показали, что плоскостная теплопроводность пленки на основе графена, толщиной 20 микрометров, может достигать значения удельной теплопроводности 1 600 Вт/мК, что в четыре раза больше меди.
Комментарии: